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Effect of CO2 partial pressure on oxidation

of low-oxygen SiC fibers (Hi-Nicalon) in Ar-CO2

gas mixtures
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The oxidation behavior and thermal stability of Si C fibers (Hi-Nicalon) in Ar-CO2 gas
mixtures were investigated at 1773 K, through mass change determination, XRD analysis,
resistivity measurement, SEM observation and tensile tests. Mass gain and cristobalite
formation were observed at pCO2 � 103 Pa, showing the occurrence of passive-oxidation of
the fibers. On the other hand, the active-oxidation was characterized by the mass loss, no
formation of SiO2 film and a marked increase in resistivity at pCO2 � 5 × 102 Pa. The oxygen
potential for the active-to-passive oxidation transition in Ar-CO2 gas mixtures was nearly
identical to that in Ar-O2 gas mixtures. About 50% of the strength in the as-received state
was retained after the active-oxidation in Ar-CO2 gas mixtures.
C© 2004 Kluwer Academic Publishers

1. Introduction
Polycarbosilane-derived silicon carbide fibers are of
great importance as reinforcing materials of ceramic
matrix composites (CMC) for high-temperature appli-
cations. The high-temperature stability and oxidation
resistance are required for fabrication and service of
such fiber-reinforced CMC. Therefore, the microstruc-
ture, microchemistry, mechanical properties and ther-
mal stability have been extensively investigated for the
silicon carbide fibers after high-temperature exposure
in inert environments (Ar, N2 and vacuum) and oxidiz-
ing environments (O2 and air). The combustion envi-
ronments have been changed over a wide range of oxy-
gen potentials. As a result, silicon carbide fibers can be
oxidized in either the passive-oxidation regime or the
active-oxidation regime. Since the passive-oxidation al-
lows the surface of silicon carbide fibers to be coated
with a stable SiO2 film under high oxygen potential, fur-
ther oxidation can be retarded. On the other hand, the
active-oxidation causes the evaporation of SiC in the
fibers producing SiO gas under a low oxygen poten-
tial, resulting in a marked degradation of fiber strength.
While there were numerous reports on the passive-
oxidation of silicon carbide fibers [1–21], there was
little information on the active-oxidation of silicon car-
bide fibers. The authors have investigated the oxida-
tion behaviors for various types of polymer-derived
silicon carbide fibers in Ar-O2 gas mixtures ranging
from active-oxidation to passive-oxidation region [22–
24]. CO2 gas is necessarily present in the combustion
environments. Therefore, further investigations of the
oxidation of silicon carbide fibers throughout a wide

range of CO2 concentrations are important. Therefore,
the oxidation of Nicalon and Hi-Nicalon fibers (Nippon
Carbon Co., Japan) has been studied in pure CO2 gas
[25, 26]. The exposure of the fibers at 1773 K in CO2
gas showed the mass gain and silica formation which
are characteristic of passive-oxidation. The reduction
in CO2 partial pressure appears to cause the transi-
tion from passive-oxidation to active-oxidation. In the
present work, the CO2 partial pressures were controlled
by diluting CO2 gas with Ar gas. The oxidation behav-
ior of Hi-Nicalon fibers at 1773 K under CO2 partial
pressures from 102 to 105 Pa was studied through mass
change determination, X-ray diffraction analysis, re-
sistivity measurements, scanning electron microscopic
observation and tensile tests. The CO2 partial pressure
for the active-to-passive oxidation transition was deter-
mined for Hi-Nicalon in Ar-CO2 gas mixtures. These
results were compared with those for the oxidation of
Hi-Nicalon in Ar-O2 gas mixtures [23].

2. Experimental method
The samples employed in this study were Si C fibers
(Hi-Nicalon) manufactured by Nippon Carbon Co.
(Tokyo, Japan). Hi-Nicalon fibers have a molar compo-
sition of SiC1.39O0.01 and a mean diameter of 14 µm.
500 mg of fibers, 3 cm in length, were charged in a high-
purity alumina boat and then were placed in a alumina
tube of an SiC resistance furnace. After evacuation,
an Ar-CO2 gas mixture was allowed to flow in to the
tube at a flow rate of 100 cm3/min. The partial pres-
sure of carbon dioxide was changed over a range from
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102 to 105 Pa (pAr = 0 Pa). The sample was heated at
a rate of 300 K/min and after holding of 36 ks at 1773
K, it was cooled to room-temperature at 600 K/h.

The mass change of the fibers was determined by
weighing before and after oxidation in Ar-CO2 gas
mixtures. The existing phases and β-SiC crystallite
size of the fibers were determined by X-ray diffrac-
tometer (XRD). Before the specific resistivity mea-
surements and tensile tests, SiO2 film was removed
with NH4OH + HF solution. The fibers oxidized in
the active-oxidation region, as it is, were subjected to
resistivity measurement and tensile test. The resistivity
measurements were performed at room temperature by
applying a direct current to a single fiber. Both ends
of a fibers were attached, with an electroconductive
resin, to copper electrode plates spaced 0.8 mm apart.
Ten fibers were tested to determine the average resis-
tivity. Room-temperature tensile tests were conducted
using a 10 mm gauge length and a crosshead speed of
2 mm/min. The average of 10 tensile tests was taken as
the tensile strength under each oxidation. Morpholo-
gies of as-oxidized fibers and SiO2-removed fibers
were examined by field-emission scanning microscopy
(FE-SEM).

3. Results
3.1. Mass change
Fig. 1 shows the mass changes for Hi-Nicalon fibers
oxidized for 36 ks at T = 1773 K and pCO2 = 102–
105 Pa. There were the mass gains of +5–+7% at
pCO2 � 103 Pa. Hi-Nicalon fibers were oxidized in the
passive-oxidation regime in pure CO2 gas (at pCO2 =
105 Pa) [25]. Therefore, the observed mass gains show
the occurrence of passive-oxidation as well. On the
other hand, the mass losses of about −5% were ob-
served at pCO2 � 5 × 102 Pa. These values are signifi-
cantly lower than the mass loss of −0.5% after expo-
sure of 36 ks at T = 1773 K and pAr = 105 Pa (in
pure Ar gas). Furthermore, they were roughly double
the mass loss of −2.3% for compete decomposition of
amorphous silicon oxycarbide (SiCX OY ) phase in Hi-

Figure 1 Mass changes for Hi-Nicalon fibers exposed for 36 ks at 1773 K
in Ar-CO2 gas mixtures.

Nicalon fibers [13]. This result implies that the high-
temperature exposure in Ar-CO2 gas mixtures with
low CO2 partial pressures caused the thermal decom-
position of SiCX OY phase and the subsequent active-
oxidation of SiC grains, as well as the exposure in Ar-
O2 gas mixtures of pCO2 � 10 Pa [23].

3.2. X-ray diffraction analysis
Fig. 2 shows the X-ray diffraction patterns for the fibers
oxidized for 36 ks at T = 1773 K and pCO2 = 0–
105 Pa. The sharp X-ray diffraction peak at 2θ

.=.. 22◦
reveals that Hi-Nicalon fibers were passively oxidized
at pCO2 � 103 Pa, resulting in the formation of a cristo-
balite film on the fiber surface. On the other hand, in
view of the mass loss (Fig. 1), no detection of cristo-
balite phase implies the occurrence of active-oxidation
at pCO2 � 5 × 102 Pa.

The apparent crystallite size of β-SiC, DSiC was cal-
culated from the half-width value of (111) peak us-
ing Scherrer’s formula. Fig. 3 shows the value DSiC
shows a function of pCO2 . The fibers after oxidation at
1773 K have three times larger β-SiC crystallite size
(DSiC

.=.. 14 nm) than the as-received fibers, indepen-
dently on pCO2 . The grain growth β-SiC is thought to
be mainly caused by the crystallization of uncrystal-
lized Si C phase in Hi-Nicalon fibers (T � 1473 K)
[27]. Thus, Fig. 3 reveals that the oxidation tempera-
ture is a controlling factor in the grain growth of β-SiC.

3.3. Fiber morphology
Fig. 4 show the morphologies of the fibers oxidized
for 36 ks at 1773 K. All the fibers oxidized in the
passive-oxidation region were coated with thick cristo-
balite film (A–F). The cristobalite film is known to crack
during cooling, owing to a large volume shrinkage as-
sociated to the cristobalite β → α transition (A and
C). Therefore, it is noted that no crack was observed
in the cristobalite film formed at pCO2 = 103 Pa (E).
On the other hand, the fracture appearance of unoxi-
dized cores is smooth and glassy (B, D and F). The
fiber surface is slightly roughened after exposure at
pCO2 = 5 × 102 Pa (G, H). A further reduction in pCO2

value (pCO2 = 102 Pa) results in a peculiar appearance
on fiber surface. As a consequence of active-oxidation,
the grooves are deeply scooped in the surface of fiber
(I, J). The fiber core displays a glassy fracture surface,
as well as that oxidized in the passive-oxidation region,
showing that the active-oxidation advances from the
surface to the interior.

SEM photos at high magnification are shown in
Fig. 5, for the fibers in the as-received state and after
active-oxidation. The irregularity of the surface is very
weak in the as-received state (A). The active-oxidation,
as a consequence of the gasification of SiC grains,
causes serious unevenness of fiber surface (B, C).

3.4. Specific resistivity
Fig. 6 shows the specific resistivity of the fibers oxi-
dized for 36 ks at T = 1773 K as a function of pCO2 .
For the fibers oxidized at pCO2 � 103 Pa, a cristobalite
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Figure 2 X-ray diffraction patterns for as-received fiber and fibers oxidized for 36 ks at 1773 K in Ar-CO2 gas mixtures with different CO2 partial
pressures.

Figure 3 β-SiC crystallite size of fibers heated for 36 ks at 1773 K in
Ar-CO2 gas mixtures with different CO2 partial pressures.

film was removed with NH4F + HF solution before
resistivity measurement. The resistivity of unoxidized
core after passive-oxidation at pCO2 � 103 Pa is lowered
to about half of that for the as-received fibers. This ap-
pears to be responsible for the organization of free car-
bon and the crystallization of Si C phase in the fibers
at T = 1773 K [9, 27]. On the other hand, after active-
oxidation region at pCO2 � 5 × 102 Pa, the resistiv-
ity was larger than that in the as-received state. This
is because the activation-oxidation renders the fiber
structure highly porous, resulting in hindrance to the
electrical conduction in a fiber. In addition, such high
porosity of the fibers leads to a marked reduction
of cross-sectional area controlling the conductivity.
Therefore, the net resistivity of the fibers oxidized in the
active-oxidation regime is thought to be overestimated
by the use of apparent cross-sectional area calculated
from the fiber diameter.

3.5. Tensile strength
Fig. 7 shows the room-temperature tensile strength
for the fibers after oxidation of 36 ks at 1773 K,

as a function of pCO2 value. The fibers oxidized
in the passive-oxidation region (at pCO2 � 103 Pa)
were subjected to tensile tests after removal of a
cristobalite film. About 90% of the strength in the
as-received state (2.4 GPa) is retained after oxidation
at pCO2 � 7 × 103 Pa. This strength is much larger
than that of the fibers exposed in Ar gas (1.7 GPa).
The reduction of pCO2 in the passive-oxidation region
causes a marked degradation of strength from 2.4 GPa
at at pCO2 = 7 × 103 Pa to 0.7 GPa at pCO2 = 103 Pa.
After oxidation in Ar-CO2 gas mixtures, about 50% of
the strength in the as-received state is retained even in
the active-oxidation region.

4. Discussion
The passive-oxidation rate of high-purity stoichiomet-
ric CVD-SiC in CO2 gas was negligibly small and
independent of temperature [28]. On the other hand,
Hi-Nicalon fibers employed in this work were sub-
jected to a severe passive-oxidation and showed strong
temperature-dependence of oxidation rate [25]. At
T = 1773 K and pCO2 � 103 Pa, Hi-Nicalon fibers were
passively oxidized in Ar-CO2 gas mixtures, as well as
pure CO2 gas. A further reduction in CO2 partial pres-
sure to pCO2 � 5 × 102 Pa caused the active-oxidation
of Hi-Nicalon fibers. The oxidation of silicon carbide
in CO2 gas are given as follows [29]:

passive-oxidation,

SiC(s) + CO2(g) = SiO2(s) + 2C(s) (1)

active-oxidation,

2SiC(s) + CO2(g) = 2SiO(g) + 3C(s) (2)

The heat-treatment of Hi-Nicalon fibers in CO gas
caused the formation of carbon film [30]. However,
Auger electron spectroscopic analysis and X-ray
diffraction show that no carbon film was formed on the
surface of Hi-Nicalon fibers after oxidation in Ar-CO2
gas mixtures. Therefore, it is necessary to consider
alternative mechanism for the oxidation of Hi-Nicalon
by CO2 gas.
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Figure 4 SEM photographs of fibres oxidized for 36 ks in Ar-CO2 gas mixtures. (A), (B): pCO2 = 105 Pa, (C), (D): pCO2 = 104 Pa, (E), (F):
pCO2 = 103 Pa, (G), (H): pCO2 = 5 × 102 Pa, (I), (J): pCO2 = 102 Pa.
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Figure 5 SEM photographs of as-received fiber (A) and fibers oxidized
for 36 ks in Ar-CO2 gas mixtures of pCO2 = 5 × 102 Pa (B) and
102 Pa (C).

CO2 gas dissociates to CO and O2 gases at high
temperatures.

CO2(g) = CO(g) + 1/2O2(g) (3)

�G◦(J/mol) = 280960 − 85.23T/K [31]

Subsequently, Hi-Nicalon fibers are oxidized by dis-
sociated oxygen:

in the passive-oxidation region:

SiC1.39O0.01(s) + 1.69O2(g) = SiO2(s) + 1.39CO(g)

(4)

Figure 6 Specific resistivity of fibers heated for 36 ks at 1773 K in Ar-
CO2 gas mixtures with different CO2 partial pressures.

Figure 7 Room temperature tensile strength of fibers heated for 36 ks
at 1773 K in Ar-CO2 gas mixtures with different CO2 partial pressures.

in the active-oxidation region:

SiC1.39O0.01(s) + 1.19O2(g) = SiO(g) + 1.39CO(g).

(5)

The oxygen potentials of Ar-CO2 gas mixtures, pO2 ,
can be calculated from the standard free energy change,
�G◦, for the dissociation of CO2 gas, i.e., reaction
(1). Thus, on the basis of pO2 values in gas mixtures,
the properties of Hi-Nicalon fibers oxidized in Ar-
CO2 gas mixtures were compared with those of Hi-
Nicalon fibers oxidized in Ar-O2 gas mixtures [25].

Fig. 8 shows the mass change of Hi-Nicalon fibers ox-
idized for 36 ks at T = 1773 K as a function of oxygen
potential (pO2 ) of Ar-CO2 and Ar-O2 gas mixtures. The
mass gain caused by the passive-oxidation is smaller in
Ar-CO2 than in Ar-O2 gas mixtures. This is partly due to
different oxidation times; 36 ks for the oxidation in Ar-
CO2 gas mixtures, 72 Ks for that in Ar-O2 gas mixtures.
The mass change data displays that the transition from
the mass gain to the mass loss occurred at pO2 = 5–
8 Pa in Ar-CO2 gas mixtures and at pO2 = 10–25 Pa in
Ar-O2 gas mixtures. Thus, the oxygen potential for the
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Figure 8 Mass change of Hi-Nicalon fibers heat-treated at 1773 K as
function of oxygen potential of Ar-CO2 and Ar-O2 gas mixtures.

Figure 9 Oxygen potential of active-to-passive oxidation transition for
different types of silicon carbide oxidized under various oxidation con-
ditions [32] and for Hi-Nicalon fibers oxidized under Ar-CO2 and Ar-O2

gas mixtures.

active-to-passive oxidation transition is slightly lower
in Ar-CO2 than in Ar-O2 gas mixtures. The active-to-
passive oxidation transition is probably dependent not
only on the oxidation temperature and oxygen partial
pressure but also on the gas flow rate, physical proper-
ties of SiO2 film and diffusivity of oxygen through the
film. Therefore, the different oxygen potential for the
active-to-passive oxidation transition between Ar-CO2
than Ar-O2 gas mixtures appears to be attributable to
the difference in the experimental conditions. In addi-
tion, it is possible that CO2 gas, as well as the dissoci-
ated oxygen, oxidizes Hi-Nicalon fibers in Ar-CO2 gas
mixtures.

Fig. 9 shows the active-to-passive oxidation tran-
sition region for different types of silicon carbide
oxidized under various oxidation conditions [32]. The
transition region is in the wide range of pO2 = 10−2

to 103 Pa at 1773 K. The active-to-passive oxidation
transition for Hi-Nicalon fibers oxidized in both Ar-
CO2 and Ar-O2 gas mixtures are within this transition
region for silicon carbides.

Figure 10 Relationship between apparent crystal size of β-SiC of Hi-
Nicalon fibers oxidized at 1773 K and oxygen potential of gas mixtures.

Figure 11 Relationship between specific resistivity of Hi-Nicalon fibers
oxidized at 1773 K and oxygen potential of gas mixtures.

Fig. 10 shows the relationship between the apparent
crystal size of β-SiC, DSiC, and the oxygen potential
(pO2 ) of gas mixtures [23]. After oxidation in Ar-CO2
and Ar-O2 gas mixtures at 1773 K, the growth of SiC
crystals was caused by the crystallization of noncrystal-
lized Si C phase and thermal decomposition of amor-
phous Si C O phase [27]. In particular, it may be noted
that a marked coarsening of SiC grains (DSiC = 30–
36 nm) after the active-oxidation in Ar-O2 gas mixtures
of pO2 � 10 Pa. On the other hand, in Ar-CO2 gas mix-
ture, the DSiC value after active-oxidation (pO2 = 5 Pa)
was nearly identical to that after passive-oxidation.

Fig. 11 shows the relationship between the specific
resistivity of Hi-Nicalon fibers, ρ, and the oxygen
potential (pO2 ) of gas mixtures [23]. The ρ value in the
passive-oxidation region was lower than that in the as-
received state, owing to the crystallization of SiC phase
and the organization of carbon aggregates at 1773 K
[9, 27]. The active-oxidation in both Ar-CO2 and Ar-
O2 gas mixtures at 1773 K caused severe breakdown
of fibrous structure, resulting in a 10-fold increase in
specific resistivity.
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Figure 12 Relationship between room-temperature tensile strength of
Hi-Nicalon fibers oxidized at 1773 K and oxygen potential of gas
mixtures.

Fig. 12 shows the relationship between the room-
temperature tensile strength of Hi-Nicalon fibers, σ ,
and the oxygen potential (pO2 ) of gas mixtures [23].
80–90% of the strength in the as-received state was
retained after oxidation at pO2 � 50 Pa. There was a
marked degradation of fiber strength after oxidation
at pO2 < 50 Pa. The fiber strength was nearly com-
pletely lost after active-oxidation in Ar-O2 gas mix-
tures (pO2 � 10 Pa). A drastic coarsening of SiC crys-
tals during active-oxidation appears to be critical in the
degradation of fiber strength. On the other hand, it may
be noted that the fibers oxidized in Ar-CO2 gas mix-
tures retained 48% of initial strength even after active-
oxidation (pO2 = 1.7 Pa). As can be seen from Fig. 10,
this is because the coarsening of SiC grains during
active-oxidation was retarded in Ar-CO2 gas mixtures.

5. Conclusion
The exposure of Hi-Nicalon fibers at 1773 K in Ar-
CO2 gas mixtures caused passive-oxidation which was
characterized by mass gain and cristobalite formation
at pCO2 � 103 Pa and the active-oxidation which was
characterized by the mass loss and a marked increase
in resistivity at pCO2 � 5 × 103 Pa. The oxygen po-
tential for the active-to-passive oxidation transition in
Ar-CO2 gas mixtures (pO2 = 5–10 Pa) was slightly
lower than that in Ar-O2 gas mixtures (pO2 = 10–
25 Pa). While a marked coarsening of β-SiC grains
was caused by the active-oxidation in Ar-O2 gas mix-
tures (DSiC = 30–36 nm), β-SiC grain size was almost
identical throughout the active- and passive-oxidation
region in Ar-CO2 gas mixtures (DSiC = 13–14 nm).
Consequently, the fiber strength was completely lost
after active-oxidation in Ar-O2 gas mixtures but about
50% of the strength in the as-received state was retained
after active-oxidation in Ar-CO2 gas mixtures.
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